A deep learning-based model reduction (DeePMR) method for simplifying chemical kinetics is proposed and validated using high-temperature auto-ignitions, perfectly stirred reactors (PSR), and one-dimensional freely propagating flames of n-heptane/air mixtures. The mechanism reduction is modeled as an optimization problem on Boolean space, where a Boolean vector, each entry corresponding to a species, represents a reduced mechanism. The optimization goal is to minimize the reduced mechanism size given the error tolerance of a group of pre-selected benchmark quantities. The key idea of the DeePMR is to employ a deep neural network (DNN) to formulate the objective function in the optimization problem. In order to explore high dimensional Boolean space efficiently, an iterative DNN-assisted data sampling and DNN training procedure are implemented. The results show that DNN-assistance improves sampling efficiency significantly, selecting only $10^5$ samples out of $10^{34}$ possible samples for DNN to achieve sufficient accuracy. The results demonstrate the capability of the DNN to recognize key species and reasonably predict reduced mechanism performance. The well-trained DNN guarantees the optimal reduced mechanism by solving an inverse optimization problem. By comparing ignition delay times, laminar flame speeds, temperatures in PSRs, the resulting skeletal mechanism has fewer species (45 species) but the same level of accuracy as the skeletal mechanism (56 species) obtained by the Path Flux Analysis (PFA) method. In addition, the skeletal mechanism can be further reduced to 28 species if only considering atmospheric, near-stoichiometric conditions (equivalence ratio between 0.6 and 1.2). The DeePMR provides an innovative way to perform model reduction and demonstrates the great potential of data-driven methods in the combustion area.
翻译:采用高温自动光度、完美搅拌反应堆(PSR)和n-heptane/air混合物的一维自由传播火焰来提议和验证基于深度学习的简化化学动能模型(DeePMR)的减少方法。机制的减少模型是布林空间的一个优化问题,Boolean矢量与物种相对应的每个条目都代表一个较低的机制。优化目标是将一个预选基准数量组的差错容忍度导致的机制规模缩小到最小。DEPMR的主要想法是使用一个深层神经物种网络(DNNR)来制定优化问题中的目标功能。为了高效探索高度布林空间,一个互动的DNNW辅助数据取样和DNNN培训程序得到了实施。结果显示,DNN援助大大提高了采样效率,只从10+34美元中选取了10+5美元样本,以达到足够的准确性能。DNNNF。结果显示DNN具备进一步识别关键物种的能力,并合理预测接近机制的准确性降低机制性。在优化的温度机制中,因此,最优化的DNNNNDMR将降低了燃料的温度机制。在燃料温度下将降低机能速度机制。