Overlapping community detection is a key problem in graph mining. Some research has considered applying graph convolutional networks (GCN) to tackle the problem. However, it is still challenging to incorporate deep graph convolutional networks in the case of general irregular graphs. In this study, we design a deep dynamic residual graph convolutional network (DynaResGCN) based on our novel dynamic dilated aggregation mechanisms and a unified end-to-end encoder-decoder-based framework to detect overlapping communities in networks. The deep DynaResGCN model is used as the encoder, whereas we incorporate the Bernoulli-Poisson (BP) model as the decoder. Consequently, we apply our overlapping community detection framework in a research topics dataset without having ground truth, a set of networks from Facebook having a reliable (hand-labeled) ground truth, and in a set of very large co-authorship networks having empirical (not hand-labeled) ground truth. Our experimentation on these datasets shows significantly superior performance over many state-of-the-art methods for the detection of overlapping communities in networks.


翻译:在图形采矿中,社区过度探测是一个关键问题。一些研究考虑应用图形革命网络(GCN)来解决这个问题。然而,在一般非常规图表的情况下,将深图革命网络(GCN)纳入深海图象革命网络(GCN)仍然具有挑战性。在本研究中,我们根据我们新的动态扩展集成机制和统一的端对端编码解码器框架,设计了一个深度动态图状革命网络(DynaResGCN),以探测网络中的重叠社区。深DynaResGCN模型被用作编码器,而我们采用Bernoulli-Poisson(BP)模型作为解码器。因此,我们在研究主题数据集中应用重叠社区探测框架,而没有地面真相,这是一组来自Facebook的具有可靠(手贴标签的)地面真相的网络,以及一组具有经验性(非手贴标签的)地面真相的非常大型的共同作者网络。我们在这些数据集的实验表明,在网络中检测重叠社区的许多最先进的方法上表现非常优。

0
下载
关闭预览

相关内容

在网络中发现社区(称为社区检测/发现)是网络科学中的一个基本问题,在过去的几十年中引起了很多关注。 近年来,随着对大数据的大量研究,另一个相关但又不同的问题(称为社区搜索)旨在寻找包含查询节点的最有可能的社区,这已引起了学术界和工业界的广泛关注,它是社区检测问题的依赖查询的变体。
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员