项目名称: 磷酸锰锂/导电高分子复合材料作锂离子动力电池正极的研究

项目编号: No.51203041

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 有机高分子材料学科

项目作者: 任丽

作者单位: 河北工业大学

项目金额: 25万元

中文摘要: 磷酸锰锂具有输出电压高(4.1-4.5V)、成本低、稳定、能量密度适中、资源丰富、安全等突出优点,是理想的锂离子动力电池正极材料。其主要不足在于基础材料均匀电导率不高,大电流充放电能力差。本课题拟通过与电活性导电高分子复合技术,来解决其导电性问题,并综合考虑振实密度和颗粒大小,开发具有高比能、大容量、快速充放电、长寿命、用作动力电池的磷酸锰锂复合正极材料。首先采用水热免碳包覆技术制备微纳米磷酸锰锂,然后通过化学氧化法进行原位聚合,使其与导电高分子进行复合,克服碳黑、粘接剂等非电活性添加物加入所带来的不利影响,研制出具有较高电导率和电化学性能优异的磷酸锰锂复合正极材料。既保持磷酸锰锂高的氧化电位和容量,又提高了由于电活性导电高分子引入后所构成新材料的电导率和循环寿命。分析该复合正极材料在获得优异电化学性能方面电活性导电高分子和磷酸锂锰两者之间的协同作用机理。

中文关键词: 磷酸锰锂;掺杂;石墨烯;原位包覆;锂离子电池

英文摘要: LiMnPO4 has many advantages,such as high output voltage (4.1-4.5V), low cost, appropriate energy density, a wide variety of sources, running safely , stablely(more safety and stability in Li-battery applications)and so on. It is the ideal cathode material for the motive power batteries. However,the prime disadvantage is the low electrical conductivity of the basic cathode material,and a poor cycling ability during high charge/discharge rates. This proposal is to solve the problem of conductivity by compositing electrochemical active conducting polymer with LiMnPO4. In order to get power battery with LiMnPO4 composite materials as cathode for power battery with high specific energy, high capacity, long life and rapid charging-discharging,the solid density and partical size of the material should be considered at meanwhile. First,the LiMnPO4 particles are hydrothermal synthesized without carbon coated,then it will be composite with conducting polymer by in-situ chemical oxidative polymerization. The negative effect by adding carbon black, binders and other non-electrical active additions will be weakened.So LiMnPO4 composite materials as cathode with high conductivity and electrochemical performance would be got. The composite cathode will not only keep the high oxidation potential and capacity of LiMnPO4, but als

英文关键词: lithium maganese phosphate;doping;graphene;in-situ coating;lithium battery

成为VIP会员查看完整内容
0

相关内容

专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
36+阅读 · 2021年4月25日
【CVPR2021】神经网络中的知识演化
专知会员服务
24+阅读 · 2021年3月11日
专知会员服务
51+阅读 · 2020年12月28日
【ICML2020-华为港科大】RNN和LSTM有长期记忆吗?
专知会员服务
73+阅读 · 2020年6月25日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
67+阅读 · 2019年10月18日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
八一八:我就没搞明白什么叫“纯钴”电池
无人机
34+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
56+阅读 · 2021年5月3日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
15+阅读 · 2019年3月16日
小贴士
相关主题
相关VIP内容
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
36+阅读 · 2021年4月25日
【CVPR2021】神经网络中的知识演化
专知会员服务
24+阅读 · 2021年3月11日
专知会员服务
51+阅读 · 2020年12月28日
【ICML2020-华为港科大】RNN和LSTM有长期记忆吗?
专知会员服务
73+阅读 · 2020年6月25日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
67+阅读 · 2019年10月18日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员