Search and recommendation ecosystems exhibit competition among content creators. This competition has been tackled in a variety of game-theoretic frameworks. Content creators generate documents with the aim of being recommended by a content ranker for various information needs. In order for the ecosystem, modeled as a content ranking game, to be effective and maximize user welfare, it should guarantee stability, where stability is associated with the existence of pure Nash equilibrium in the corresponding game. Moreover, if the contents' ranking algorithm possesses a game in which any best-response learning dynamics of the content creators converge to equilibrium of high welfare, the system is considered highly attractive. However, as classical content ranking algorithms, employed by search and recommendation systems, rank documents by their distance to information needs, it has been shown that they fail to provide such stability properties. As a result, novel content ranking algorithms have been devised. In this work, we offer an alternative approach: corpus enrichment with a small set of fixed dummy documents. It turns out that, with the right design, such enrichment can lead to pure Nash equilibrium and even to the convergence of any best-response dynamics to a high welfare result, where we still employ the classical/current content ranking approach. We show two such corpus enrichment techniques with tight bounds on the number of documents needed to obtain the desired results. Interestingly, our study is a novel extension of Borel's Colonel Blotto game.
翻译:暂无翻译