Rigid image alignment is a fundamental task in computer vision, while the traditional algorithms are either too sensitive to noise or time-consuming. Recent unsupervised image alignment methods developed based on spatial transformer networks show an improved performance on clean images but will not achieve satisfactory performance on noisy images due to its heavy reliance on pixel value comparations. To handle such challenging applications, we report a new unsupervised difference learning (UDL) strategy and apply it to rigid image alignment. UDL exploits the quantitative properties of regression tasks and converts the original unsupervised problem to pseudo supervised problem. Under the new UDL-based image alignment pipeline, rotation can be accurately estimated on both clean and noisy images and translations can then be easily solved. Experimental results on both nature and cryo-EM images demonstrate the efficacy of our UDL-based unsupervised rigid image alignment method.
翻译:硬化图像对齐是计算机视觉中的一项基本任务,而传统算法要么过于敏感于噪音,要么过于耗时。最近根据空间变压器网络开发的未经监督的图像对齐方法显示清洁图像的性能有所改善,但由于严重依赖像素价值比较,因此在噪音图像上不会达到令人满意的性能。要处理这种具有挑战性的应用,我们报告一种新的未经监督的差异学习(UDL)战略,并将其应用于僵硬图像对齐。 UDL利用回归任务的数量特性,并将原始未监督的问题转换为假监督问题。在新的UDL图像对齐管道下,可以准确估计清洁和噪音图像的旋转,然后翻译可以很容易地解决。关于自然和冷冻-EM图像的实验结果显示了我们基于UDL的未经监督的硬性图像对齐方法的功效。