Recently, learned image compression has achieved remarkable performance. Entropy model, which accurately estimates the distribution of latent representation, plays an important role in boosting rate distortion performance. Most entropy models capture correlations in one dimension. However, there are channel-wise, local and global spatial correlations in latent representation. To address this issue, we propose multi-reference entropy models MEM and MEM+ to capture channel, local and global spatial contexts. We divide latent representation into slices. When decoding current slice, we use previously decoded slices as contexts and use attention map of previously decoded slice to predict global correlations in current slice. To capture local contexts, we propose enhanced checkerboard context capturing to avoid performance degradation while retaining two-pass decoding. Based on MEM and MEM+, we propose image compression models MLIC and MLIC+. Extensive experimental evaluations have shown that our MLIC and MLIC+ achieve state-of-the-art performance and they reduce BD-rate by 9.77% and 13.09% on Kodak dataset over VVC when measured in PSNR.


翻译:最近,学习到的图像压缩取得了显著的绩效。 精确估计潜在代表面分布的 Etropy 模型在提高率扭曲性能方面起着重要作用。 多数的 entropy 模型在一个维度上捕捉了相关关系。 但是,在潜在代表度方面存在着通道、 本地和全球的空间相关性。 为了解决这一问题, 我们提出了多参考的 entropy 模型MEM 和 MEM+ 来捕捉通道、 本地和全球空间背景。 我们将潜在代表度分为切片。 当解码当前切片时, 我们使用以前解码的切片作为背景, 并使用先前解码切片的注意图来预测当前切片的全球相关性。 为了捕捉当地环境, 我们建议加强检查板环境, 以避免性能退化, 同时保留双向解码。 根据 MEM 和 MEM+, 我们提出了图像压缩模型 MIC 和 MLIC+ 以捕捉到频道、 和 MLIC+ 的广泛实验性评估显示, 我们的MLIC 和 MLIC 实现了最先进的性性性能,, 当在PSNR 中测量时, Kodakdak 数据设置上的BD- 降为9.77%和 13.09%和 13.%。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年10月20日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员