Estimating reflectance layer from a single image is a challenging task. It becomes more challenging when the input image contains shadows or specular highlights, which often render an inaccurate estimate of the reflectance layer. Therefore, we propose a two-stage learning method, including reflectance guidance and a Shadow/Specular-Aware (S-Aware) network to tackle the problem. In the first stage, an initial reflectance layer free from shadows and specularities is obtained with the constraint of novel losses that are guided by prior-based shadow-free and specular-free images. To further enforce the reflectance layer to be independent from shadows and specularities in the second-stage refinement, we introduce an S-Aware network that distinguishes the reflectance image from the input image. Our network employs a classifier to categorize shadow/shadow-free, specular/specular-free classes, enabling the activation features to function as attention maps that focus on shadow/specular regions. Our quantitative and qualitative evaluations show that our method outperforms the state-of-the-art methods in the reflectance layer estimation that is free from shadows and specularities.
翻译:从单一图像中测出反光层是一项艰巨的任务。 当输入图像包含阴影或光谱亮点时,它就更具挑战性,因为光谱亮点往往造成反光层的不准确估计。 因此,我们提出一个两阶段学习方法,包括反射导和影光/光谱软件(S-Aware)网络,以解决这一问题。 在第一阶段,初始反光层将获得一个没有阴影和光谱的初步反光层,其限制是新的损失,这些损失是由先前的无影子和无视光图像引导的。为了进一步强化反光层,使其独立于第二阶段的阴影和光谱度,我们引入了S-A软件网络,将反光图像与输入图像区分开来。我们的网络使用一个分类器,将影子/无阴影、无光谱/无光谱类进行分类,使激活特征能够作为关注图发挥作用,这些图以阴影/光谱地区为重点。我们的定量和定性评估显示,我们的方法比反映图像层的状态和图层图法更不适应。