Recommender systems often rely on large embedding tables that map users and items to dense vectors of uniform size, leading to substantial memory consumption and inefficiencies. This is particularly problematic in memory-constrained environments like mobile and Web of Things (WoT) applications, where scalability and real-time performance are critical. Various research efforts have sought to address these issues. Although embedding pruning methods utilizing Dynamic Sparse Training (DST) stand out due to their low training and inference costs, consistent sparsity, and end-to-end differentiability, they face key challenges. Firstly, they typically initializes the mask matrix, which is used to prune redundant parameters, with random uniform sparse initialization. This strategy often results in suboptimal performance as it creates unstructured and inefficient connections. Secondly, they tend to favor the users/items sampled in the single batch immediately before weight exploration when they reactivate pruned parameters with large gradient magnitudes, which does not necessarily improve the overall performance. Thirdly, while they use sparse weights during forward passes, they still need to compute dense gradients during backward passes. In this paper, we propose SparseRec, an lightweight embedding method based on DST, to address these issues. Specifically, SparseRec initializes the mask matrix using Nonnegative Matrix Factorization. It accumulates gradients to identify the inactive parameters that can better improve the model performance after activation. Furthermore, it avoids dense gradients during backpropagation by sampling a subset of important vectors. Gradients are calculated only for parameters in this subset, thus maintaining sparsity during training in both forward and backward passes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员