We propose a proof-of-sequential-work (PoSW) that can be verified with only a single query to the random oracle for each random challenge. We propose a PoSW that allows any verifier, even the one with no parallelism, to verify using just a single sequential computation on a single challenge. All the existing PoSWs [6, 3, 1, 4] mandate a prover to compute a sequence of responses from a random oracle against N -rounds of queries. Then the prover commits this sequence using a commitment scheme (e.g., Merkle root (like) commitment) predefined in the PoSWs. Now the verifier asks the prover to provide a set of proofs against t randomly chosen checkpoints, called as challenges, in the computed sequence. The verifier finds out the commitment from each of these proofs spending O(log N ) rounds of queries to the oracle. It can be reduced to a single round of queries only if the verifier owns O(log N ) parallelism [4]. The verifier in our PoSW demands no parallelism but uses a single query to the random oracle in order to verify each of the t challenges. The key observation is that the commitment schemes themselves in the prior works demand O(log N ) oracle queries to verify. So our PoSW asks the prover to undergo an additional efficient binary operation x on the responses from the random oracle against N -rounds of queries. The cumulative result of x, represented as a map f , on all such responses serves the purpose of the commitment. The verifier verifies this cumulative result.
翻译:我们建议一个序列工作验证( POSW), 只能对随机挑战的随机孔径进行单一查询才能验证。 我们建议一个 PoSW, 允许任何核查者, 即使是没有平行的核查者, 在一个单一的挑战中使用单次顺序计算进行核查。 所有现有的 PoSW 都授权一个验证者对 N - 轮询问进行随机神器响应序列的计算。 然后验证者使用一个承诺计划( 例如, Merkle root (类似) 承诺) 进行此序列 。 现在, 验证者要求验证者在计算序列中, 允许任何核查者( 即使是没有平行的) 对任何随机选择的检查站提供一套证据。 校验者发现这些证据中的每一个用于 O( log N ) 回合对质的询问。 只有校验者拥有O ( log N) 所有的平行反应, 才能进行单一轮查询 。 校验者要求我们POSW 的随机性回答不要求平行的, 但要用一个单一的验证器来验证每个随机或最后的检查结果。