When researchers carry out a null hypothesis significance test, it is tempting to assume that a statistically significant result lowers Prob(H0), the probability of the null hypothesis being true. Technically, such a statement is meaningless for various reasons: e.g., the null hypothesis does not have a probability associated with it. However, it is possible to relax certain assumptions to compute the posterior probability Prob(H0) under repeated sampling. We show in a step-by-step guide that the intuitively appealing belief, that Prob(H0) is low when significant results have been obtained under repeated sampling, is in general incorrect and depends greatly on: (a) the prior probability of the null being true; (b) type-I error rate, (c) type-II error rate, and (d) replication of a result. Through step-by-step simulations using open-source code in the R System of Statistical Computing, we show that uncertainty about the null hypothesis being true often remains high despite a significant result. To help the reader develop intuitions about this common misconception, we provide a Shiny app (https://danielschad.shinyapps.io/probnull/). We expect that this tutorial will help researchers better understand and judge results from null hypothesis significance tests.
翻译:当研究人员进行一项无效假设意义测试时,人们可能会认为,在统计上意义重大的结果降低Prob(H0),否定假设的概率是真实的。从技术上讲,这样的说明没有意义,原因有多种:例如,无效假设并不具有与之相关的概率。然而,可以放松某些假设,在重复抽样中计算事后概率Prob(H0),我们在逐步指南中显示,在反复抽样中得出重大结果时,直觉的吸引力信念是低的,即Prob(H0)一般不正确,而且在很大程度上取决于:(a) 无效假设的先前概率;(b) 类型I错误率,(c) 类型II错误率,以及(d) 复制结果。我们通过在R统计计算系统中使用开源代码的逐步模拟,表明尽管取得了显著的结果,关于无效假设真实性的不确定性仍然很高。为了帮助读者发展关于这一共同错误的直觉,我们提供了一份新式的应用程序(https://danielschApprial),(https://prialniversalniversal exupal),我们提供了一份Suplievual/wearview。