This work proposes a subband network for single-channel speech dereverberation, and also a new learning target based on reverberation time shortening (RTS). In the time-frequency domain, we propose to use a subband network to perform dereverberation for different frequency bands independently. The time-domain convolution can be well decomposed to subband convolutions, thence it is reasonable to train the subband network to perform subband deconvolution. The learning target for dereverberation is usually set as the direct-path speech or optionally with some early reflections. This type of target suddenly truncates the reverberation, and thus it may not be suitable for network training, and leads to a large prediction error. In this work, we propose a RTS learning target to suppress reverberation and meanwhile maintain the exponential decaying property of reverberation, which will ease the network training, and thus reduce the prediction error and signal distortions. Experiments show that the subband network can achieve outstanding dereverberation performance, and the proposed target has a smaller prediction error than the target of direct-path speech and early reflections.
翻译:这项工作提议了一个单声道语音变换的子波段网络, 以及一个基于回旋时间缩短的新学习目标。 在时间频域中, 我们提议使用一个子波段网络独立执行不同频率波段的偏移。 时间段变换可以完全分解成子波段变换, 因此, 训练子波段网络进行子波段变换是合理的 。 皮肤变换的学习目标通常被设定为直接路话或有早期反射的可选对象 。 这种类型的目标突然变换反射, 因而可能不适合网络培训, 并导致一个大的预测错误 。 在这项工作中, 我们提议一个时间段变换目标, 以抑制回动, 并同时保持回动的指数变换属性, 这样可以方便网络培训, 从而减少预测错误和信号扭曲 。 实验显示子波段网络能够取得杰出的异常性能, 并且拟议的目标比直接路段和早期反射目标的预测错误要小。