Consider the following distributed optimization scenario. A worker has access to training data that it uses to compute the gradients while a server decides when to stop iterative computation based on its target accuracy or delay constraints. The server receives all its information about the problem instance from the worker via a rate-limited noiseless communication channel. We introduce the principle we call Differential Quantization (DQ) that prescribes compensating the past quantization errors to direct the descent trajectory of a quantized algorithm towards that of its unquantized counterpart. Assuming that the objective function is smooth and strongly convex, we prove that Differentially Quantized Gradient Descent (DQ-GD) attains a linear contraction factor of $\max\{\sigma_{\mathrm{GD}}, \rho_n 2^{-R}\}$, where $\sigma_{\mathrm{GD}}$ is the contraction factor of unquantized gradient descent (GD), $\rho_n \geq 1$ is the covering efficiency of the quantizer, and $R$ is the bitrate per problem dimension $n$. Thus at any $R\geq\log_2 \rho_n /\sigma_{\mathrm{GD}}$ bits, the contraction factor of DQ-GD is the same as that of unquantized GD, i.e., there is no loss due to quantization. We show that no algorithm within a certain class can converge faster than $\max\{\sigma_{\mathrm{GD}}, 2^{-R}\}$. Since quantizers exist with $\rho_n \to 1$ as $n \to \infty$ (Rogers, 1963), this means that DQ-GD is asymptotically optimal. The principle of differential quantization continues to apply to gradient methods with momentum such as Nesterov's accelerated gradient descent, and Polyak's heavy ball method. For these algorithms as well, if the rate is above a certain threshold, there is no loss in contraction factor obtained by the differentially quantized algorithm compared to its unquantized counterpart. Experimental results on least-squares problems validate our theoretical analysis.


翻译:考虑以下分布优化方案 。 工人可以获得用于计算梯度的培训数据 。 假设目标功能是平滑的, 强烈的 convex, 我们证明, 以目标准确度或延迟限制来停止迭代计算 。 服务器通过一个无声通信频道从工人那里接收关于问题实例的所有信息 。 我们引入了一种原则, 我们称之为差异定量( DQ), 以补偿过去的夸度错误, 以引导一个未量化的算法的下降轨迹向未量化的对应方的下降轨迹 。 假设目标函数是平滑的, 强烈的平滑度源值( DQG), 将一个纯度的振量的振度( DQQ- QQ) 平流度( QQQ- QQ), 将一个直线性收缩系数( GQ_ Q_ QQ_ Q_ Q_ ), 将一个纯度的递增度( QQ_ Q_ Q_ Q_ g) road) 法作为不振度的缩法 。 。 以 以 以 平地 平地 平地算法显示 。 。 以 平地 以 以 平 平 平 平 。 平 平 。

0
下载
关闭预览

相关内容

通用动力公司(General Dynamics)是一家美国的国防企业集团。2008年时通用动力是世界第五大国防工业承包商。由于近年来不断的扩充和并购其他公司,通用动力现今的组成与面貌已与冷战时期时大不相同。现今通用动力包含三大业务集团:海洋、作战系统和资讯科技集团。
专知会员服务
44+阅读 · 2020年10月31日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员