The main goal of this thesis is to show the crucial role that plays the symbol in analysing the spectrum the sequence of matrices resulting from PDE approximation and in designing a fast method to solve the associated linear problem. In the first part, we study the spectral properties of the matrices arising from $\mathbb{P}_k$ Lagrangian Finite Elements approximation of second order elliptic differential problem with Dirichlet boundary conditions and where the operator is $\mathrm{div} \left(-a(\mathbf{x}) \nabla\cdot\right)$, with $a$ continuous and positive over $\overline \Omega$, $\Omega$ being an open and bounded subset of $\mathbb{R}^d$, $d\ge 1$. We investigate the spectral distribution in the Weyl sense, with a concise overview on localization, clustering, extremal eigenvalues, and asymptotic conditioning. We study in detail the case of constant coefficients on $\Omega=(0,1)^2$ and we give a brief account in the case of variable coefficients and more general domains. While in the second part, we design a fast method of multigrid type for the resolution of linear systems arising from the $\mathbb{Q}_k$ Finite Elements approximation of the same considered problem in one and higher dimensional. The analysis is performed in one dimension, while the numerics are carried out also in higher dimension $d\ge 2$, demonstrating an optimal behavior in terms of the dependency on the matrix size and a robustness with respect to the dimensionality $d$ and to the polynomial degree $k$.
翻译:该论文的主要目的是显示在分析由PDE近似和设计快速方法解决相关线性问题的矩阵序列的频谱中,具有关键作用的象征作用。在第一部分,我们研究由 $\ mathbb{P ⁇ k$ Lagrangeian Finite 元素在Drichlet 边界条件下第二顺序椭圆差差差问题的光谱属性,操作员是 $\ mathrm{div}\ left (a-a( mathbf{x})\ nnabla\ cdot\right)$外的矩阵序列, 美元连续和正高于 $\ overline\ Omega$, $\ 美元是开放和受约束的矩阵的光谱属性特性。 我们研究的是美元和美元在Omega=oblistal deal deal deal deal deal deal $2, 而我们研究的是一个直径的直径解度和直径直径的直径解度, 在一个直径解号中, 在一个直径解的直径解到一个直径解的内, 在一个直径的内, 在一个直径的直径解的内,在一个直径解到一个直径解的内一个直径解的直径的内,在一个直径解的内,在一个直径解到一个直径解到一个直径解的内的一个直径解到一个直径解的内,在一个直径的内的内的内,在一个直径的内,在一个直径解到一个直径解到一个直径解到一个直径。