Bound propagation methods, when combined with branch and bound, are among the most effective methods to formally verify properties of deep neural networks such as correctness, robustness, and safety. However, existing works cannot handle the general form of cutting plane constraints widely accepted in traditional solvers, which are crucial for strengthening verifiers with tightened convex relaxations. In this paper, we generalize the bound propagation procedure to allow the addition of arbitrary cutting plane constraints, including those involving relaxed integer variables that do not appear in existing bound propagation formulations. Our generalized bound propagation method, GCP-CROWN, opens up the opportunity to apply general cutting plane methods} for neural network verification while benefiting from the efficiency and GPU acceleration of bound propagation methods. As a case study, we investigate the use of cutting planes generated by off-the-shelf mixed integer programming (MIP) solver. We find that MIP solvers can generate high-quality cutting planes for strengthening bound-propagation-based verifiers using our new formulation. Since the branching-focused bound propagation procedure and the cutting-plane-focused MIP solver can run in parallel utilizing different types of hardware (GPUs and CPUs), their combination can quickly explore a large number of branches with strong cutting planes, leading to strong verification performance. Experiments demonstrate that our method is the first verifier that can completely solve the oval20 benchmark and verify twice as many instances on the oval21 benchmark compared to the best tool in VNN-COMP 2021, and also noticeably outperforms state-of-the-art verifiers on a wide range of benchmarks. GCP-CROWN is part of the $\alpha$,$\beta$-CROWN verifier, the VNN-COMP 2022 winner. Code is available at http://PaperCode.cc/GCP-CROWN
翻译:与分支和绑定相结合的传球方法,是正式验证深神经网络特性(如正确性、稳健性和安全性)的最有效方法之一。然而,现有工程无法处理传统求解器普遍接受的削减平面限制的一般形式,而传统求解器对加强校准至关重要,通过收紧 convex 松绑,加强校准器。在本文中,我们推广了约束传播程序,允许增加任意剪切平面限制,包括现有受约束传播配方中未出现的放松整变变量。我们的普遍受约束传播方法,即GCP-CROWN,打开了应用全面切换平面平面方法来进行神经网络核查的机会,同时受益于节断平面传播方法的效率和GPU的加速。作为案例研究,我们调查了用现成混合整形的混合编程程序产生的平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面。