Efficient deployment of deep neural networks across many devices and resource constraints, particularly on edge devices, is one of the most challenging problems in the presence of data-privacy preservation issues. Conventional approaches have evolved to either improve a single global model while keeping each local heterogeneous training data decentralized (i.e. data heterogeneity; Federated Learning (FL)) or to train an overarching network that supports diverse architectural settings to address heterogeneous systems equipped with different computational capabilities (i.e. system heterogeneity; Neural Architecture Search). However, few studies have considered both directions simultaneously. This paper proposes the federation of supernet training (FedSup) framework to consider both scenarios simultaneously, i.e., where clients send and receive a supernet that contains all possible architectures sampled from itself. The approach is inspired by observing that averaging parameters during model aggregation for FL is similar to weight-sharing in supernet training. Thus, the proposed FedSup framework combines a weight-sharing approach widely used for training single shot models with FL averaging (FedAvg). Furthermore, we develop an efficient algorithm (E-FedSup) by sending the sub-model to clients on the broadcast stage to reduce communication costs and training overhead, including several strategies to enhance supernet training in the FL environment. We verify the proposed approach with extensive empirical evaluations. The resulting framework also ensures data and model heterogeneity robustness on several standard benchmarks.


翻译:许多装置和资源限制,特别是边缘装置和资源限制,高效部署深心神经网络,这是在存在数据隐私保护问题时最棘手的问题之一。常规方法已经发展,既改进单一全球模式,同时保留每个地方多样性培训数据(即数据差异性;联邦学习(FL)),又改进单一全球模式,同时保留每个地方多样性培训数据(即数据差异性;联邦学习(FL)),或训练一个总体网络,支持不同建筑环境,处理具有不同计算能力(即系统差异性;神经建筑搜索)的多样化系统。然而,很少有研究同时考虑两个方向。本文提议成立超级网络培训(FedSup)框架,以同时考虑两种情景,即客户发送和接收包含所有可能结构样本的超级网络。这一方法的灵感在于观察FL模型集成期间的平均参数与超级网络培训中的权重分担相似。因此,拟议的FSup框架结合了广泛用于培训单一射击模型(FedAvg)。此外,我们还制定了高效的算法(E-FedSup Sup)同时考虑两种情景,即客户发送并接受包括广泛的FSeximal Invial comnial vidual avidual vidual abildal abild the passing the sal commal commal commodustrual commal compulation commal impulatedaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal)。我们将若干次级级的算算算算,将若干个级的算算算算算算算算算算为高级计算机到高的系统,将若干级级的系统,将一系列的算到高级的系统,将一系列的系统,将一些高级计算机升级为高空基)。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月9日
Over-The-Air Clustered Wireless Federated Learning
Arxiv
0+阅读 · 2022年11月8日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员