The goal of 3D pose transfer is to transfer the pose from the source mesh to the target mesh while preserving the identity information (e.g., face, body shape) of the target mesh. Deep learning-based methods improved the efficiency and performance of 3D pose transfer. However, most of them are trained under the supervision of the ground truth, whose availability is limited in real-world scenarios. In this work, we present X-DualNet, a simple yet effective approach that enables unsupervised 3D pose transfer. In X-DualNet, we introduce a generator $G$ which contains correspondence learning and pose transfer modules to achieve 3D pose transfer. We learn the shape correspondence by solving an optimal transport problem without any key point annotations and generate high-quality meshes with our elastic instance normalization (ElaIN) in the pose transfer module. With $G$ as the basic component, we propose a cross consistency learning scheme and a dual reconstruction objective to learn the pose transfer without supervision. Besides that, we also adopt an as-rigid-as-possible deformer in the training process to fine-tune the body shape of the generated results. Extensive experiments on human and animal data demonstrate that our framework can successfully achieve comparable performance as the state-of-the-art supervised approaches.


翻译:深度学习方法提高了3D转换的效率和性能;然而,大多数是在地面真相的监督下培训的,在现实世界的情景中,这种转让的可用性有限;在这项工作中,我们提出了一个简单而有效的方法X-DualNet,这种方法使3D转换能够不受监督地进行。在X-DualNet中,我们引入了一个发电机$G$,其中包含函授学习和提供传输模块,以实现3D的3D转换。我们通过解决一个最佳运输问题,而没有任何关键说明,来学习成型通信,并产生高品质的中继器,在组合转移模块中,以弹性测试(ELAIN)为主。用$作为基本组成部分,我们提出一个交叉一致性学习计划和双重重建目标,以学习没有监督的3D转换。此外,我们还在培训过程中采用了一个精密易变形的变形模式,在培训过程中进行3D构成3D转换。我们学习成型通信,通过解决最佳运输问题,在没有任何关键点说明的情况下,从而产生高品质的模范板,在结构上产生可比较的动物试验。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月28日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员