Both masked image modeling (MIM) and natural language supervision have facilitated the progress of transferable visual pre-training. In this work, we seek the synergy between two paradigms and study the emerging properties when MIM meets natural language supervision. To this end, we present a novel masked visual Reconstruction In Language semantic Space (RILS) pre-training framework, in which sentence representations, encoded by the text encoder, serve as prototypes to transform the vision-only signals into patch-sentence probabilities as semantically meaningful MIM reconstruction targets. The vision models can therefore capture useful components with structured information by predicting proper semantic of masked tokens. Better visual representations could, in turn, improve the text encoder via the image-text alignment objective, which is essential for the effective MIM target transformation. Extensive experimental results demonstrate that our method not only enjoys the best of previous MIM and CLIP but also achieves further improvements on various tasks due to their mutual benefits. RILS exhibits advanced transferability on downstream classification, detection, and segmentation, especially for low-shot regimes. Code will be made available at https://github.com/hustvl/RILS.


翻译:在这项工作中,我们寻求在两种范式之间取得协同效应,并在MIM达到自然语言监督时研究新出现的特性。为此,我们提出一个新的语言语义空间预培训框架,由文本编码器编码的句子演示,作为将仅视像信号转化为交错概率的原型,作为具有意义的语义重建目标。因此,远景模型可以通过预测隐藏符号的适当语义来获取结构化信息的有用组成部分。更好的视觉演示可以通过图像文本校正目标来改进文本编码器,这对于有效的MIM目标转型至关重要。广泛的实验结果表明,我们的方法不仅享有以前的MIM和CLIP的最佳功能,而且由于相互利益而使各项任务得到进一步改进。RILS展示了下游分类、检测和分解的高级可转移性,特别是用于低发系统。将在 http://smam和CLIP提供代码。</s>

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年1月26日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
19+阅读 · 2020年12月23日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员