State estimation with sensors is essential for mobile robots. Due to sensors have different performance in different environments, how to fuse measurements of various sensors is a problem. In this paper, we propose a tightly-coupled multi-sensor fusion framework, Lvio-Fusion, which fuses stereo camera, Lidar, IMU, and GPS based on the graph optimization. Especially for urban traffic scenes, we introduce a segmented global pose graph optimization with GPS and loop-closure, which can eliminate accumulated drifts. Additionally, we creatively use a actor-critic method in reinforcement learning to adaptively adjust sensors' weight. After training, actor-critic agent can provide the system with better and dynamic sensors' weight. We evaluate the performance of our system on public datasets and compare it with other state-of-the-art methods, showing that the proposed method achieves high estimation accuracy and robustness to various environments. And our implementations are open source and highly scalable.
翻译:使用传感器进行国家估测对于移动机器人至关重要。 由于传感器在不同环境中的性能不同, 如何使各种传感器的测量发生故障。 在本文中, 我们提出一个紧密结合的多传感器聚合框架, Lvio- Fusion, 将立体摄像机、 Lidar、 IMU 和基于图形优化的全球定位系统、 Lvio- Fusion 连接起来。 特别是对于城市交通场景, 我们引入了一种有分层的GPS 和环形图像优化, 这可以消除累积的漂移。 此外, 我们创造性地使用一种演员- 批评方法来强化学习适应性调整传感器的重量。 经过培训后, 演员- critic 代理可以提供系统更好、更动态的传感器重量。 我们评估了我们的系统在公共数据集上的性能, 并与其他最先进的方法进行比较, 表明拟议方法在各种环境中都实现了高估计的准确性和稳健性。 我们的实施是开放的源和高度可扩展的。