As algorithmic decision-making systems are becoming more pervasive, it is crucial to ensure such systems do not become mechanisms of unfair discrimination on the basis of gender, race, ethnicity, religion, etc. Moreover, due to the inherent trade-off between fairness measures and accuracy, it is desirable to learn fairness-enhanced models without significantly compromising the accuracy. In this paper, we propose Pareto efficient Fairness (PEF) as a suitable fairness notion for supervised learning, that can ensure the optimal trade-off between overall loss and other fairness criteria. The proposed PEF notion is definition-agnostic, meaning that any well-defined notion of fairness can be reduced to the PEF notion. To efficiently find a PEF classifier, we cast the fairness-enhanced classification as a bilevel optimization problem and propose a gradient-based method that can guarantee the solution belongs to the Pareto frontier with provable guarantees for convex and non-convex objectives. We also generalize the proposed algorithmic solution to extract and trace arbitrary solutions from the Pareto frontier for a given preference over accuracy and fairness measures. This approach is generic and can be generalized to any multicriteria optimization problem to trace points on the Pareto frontier curve, which is interesting by its own right. We empirically demonstrate the effectiveness of the PEF solution and the extracted Pareto frontier on real-world datasets compared to state-of-the-art methods.


翻译:由于算法决策系统越来越普遍,必须确保这种系统不会成为基于性别、种族、族裔、宗教等的不公平歧视机制。 此外,由于公平措施和准确性之间固有的权衡,因此最好在不严重损害准确性的情况下学习公平加强模式,在本文中,我们提议Pareto高效公平(PEF)作为受监督学习的适当公平概念,以确保在总体损失和其他公平标准之间实现最佳的权衡。拟议的PEF概念是定义-不可知性,这意味着任何明确界定的公平概念都可以降为PEF概念。为了有效地找到一个PEF分类师,我们将公平强化分类作为一个双级优化问题,并提出一种基于梯度的方法,可以保证解决办法属于Pareto边界,为Convex和非Convex目标提供可行的保证。我们还将拟议的从Pareto边界提取和追踪任意解决办法,以便给予优于准确性和公平性措施的偏向PEF概念的概念。我们将公平性分类的分类分类作为双级优化的分类,并提出一种基于梯度的方法,从而将实际的前沿数据推向任何标准化的前沿,我们可比较地展示Pareal-brestal-bal-rolation-rolation-bal-rolus the rolus the thestrogildal degildrolus the rogildaldal degildal degilto the rogildaldaldaldal rodal to romodal romodal romodal romodaltodal roldaltodaltodal rodal rodaldaldal rodal roddd rodal rodal rodal rodal rodal rodal rodal rodal rodal roddal rodal rodal roddddal rodaldal rod rodal rod rod rodal rodald rodal rodal rodal rodaldaldaldaldaldaldal rodal rod rodaldal rodal

0
下载
关闭预览

相关内容

元强化学习综述及前沿进展
专知会员服务
61+阅读 · 2021年1月31日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
最新《分布式机器学习》论文综述最新DML进展,33页pdf
专知会员服务
118+阅读 · 2019年12月26日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年5月30日
Arxiv
0+阅读 · 2021年5月29日
Arxiv
1+阅读 · 2021年5月29日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员