Unsupervised contrastive learning has gained increasing attention in the latest research and has proven to be a powerful method for learning representations from unlabeled data. However, little theoretical analysis was known for this framework. In this paper, we study the optimization of deep unsupervised contrastive learning. We prove that, by applying end-to-end training that simultaneously updates two deep over-parameterized neural networks, one can find an approximate stationary solution for the non-convex contrastive loss. This result is inherently different from the existing over-parameterized analysis in the supervised setting because, in contrast to learning a specific target function, unsupervised contrastive learning tries to encode the unlabeled data distribution into the neural networks, which generally has no optimal solution. Our analysis provides theoretical insights into the practical success of these unsupervised pretraining methods.


翻译:在最新研究中,未经监督的对比性学习日益受到关注,并被证明是从未贴标签的数据中学习表现的有力方法。然而,很少有人知道这一框架的理论分析。在本文中,我们研究了深层未经监督的对比性学习的优化。我们证明,通过应用端对端培训,同时更新两个深度的超分神经网络,人们可以找到一种近似固定的、非凝固的对比性损失解决方案。这一结果与监督环境中现有的过度分界线分析有着内在的不同,因为与学习特定目标功能相比,未经监督的对比性学习试图将未贴标签的数据传播编码到神经网络,而神经网络一般没有最佳的解决方案。我们的分析为这些未经监督的预先培训方法的实际成功提供了理论洞察力。

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
7+阅读 · 2020年8月7日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关VIP内容
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员