Message-oriented and robotics middleware play an important role in facilitating robot control, as well as abstracting complex functionality and unifying communication patterns across networks of sensors and devices. However, the use of multiple middleware frameworks presents a challenge in integrating different robots within a single system. To address this limitation, we present Wrapyfi, a Python wrapper supporting multiple message-oriented and robotics middleware, including ZeroMQ, YARP, ROS, and ROS~2. Using Wrapyfi eases the development of scripts that run on multiple machines, thereby enabling cross-platform communication and workload distribution. We evaluated Wrapyfi in practical settings by conducting two user studies, using multiple sensors transmitting readings to deep learning models and robots such as the iCub and Pepper via different middleware. The results demonstrated Wrapyfi's usability in practice allowing for multi-middleware exchange and controlled process distribution in a real-world setting. More importantly, we showcased Wrapify's most prominent features by bridging interactions between sensors, deep learning models, and robots.


翻译:信息导向器和机器人中继器在推动机器人控制、提取复杂的功能和跨传感器和装置网络的通信模式方面发挥着重要作用。 但是,多个中继器框架的使用在将不同机器人整合到一个单一系统方面提出了挑战。为了应对这一限制,我们介绍了支持多信息导向器和机器人中继器的Python包装器,包括ZeroMQ、YARP、ROS和ROS~2。 使用 Paxyfi方便了多台机器运行的脚本的开发,从而使得跨平台通信和工作量分配成为可能。 我们通过开展两个用户研究,利用多个传感器向深层学习模型和机器人,例如iCub和通过不同中继器传输阅读的iCub和Pepep等,评估了在实际环境中的Apressyfi。 结果表明,在实际操作中,Maxyfi的可用性允许多中继器交换和控制流程分配。 更重要的是,我们通过连接传感器、深学习模型和机器人之间的交互作用,展示了最突出的特征。

0
下载
关闭预览

相关内容

International Middleware会议是讨论中间件设计、构造和使用方面的重要创新和最新进展的论坛。中间件是位于应用程序和底层平台(操作系统;数据库;硬件)之间的分布式系统软件,和/或将分布式应用程序、数据库或设备连接在一起。它的主要作用是协调和实现不同层或组件之间的通信,同时将分布的大部分复杂性隔离为一个单一的、经过充分测试和理解的系统抽象。 官网链接:http://www.middleware-conference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
On the Possibilities of AI-Generated Text Detection
Arxiv
0+阅读 · 2023年4月10日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员