Beyond self-report data, we lack reliable and non-intrusive methods for identifying flow. However, taking a step back and acknowledging that flow occurs during periods of focus gives us the opportunity to make progress towards measuring flow by isolating focused work. Here, we take a mixed-methods approach to design a logs-based metric that leverages machine learning and a comprehensive collection of logs data to identify periods of related actions (indicating focus), and validate this metric against self-reported time in focus or flow using diary data and quarterly survey data. Our results indicate that we can determine when software engineers at a large technology company experience focused work which includes instances of flow. This metric speaks to engineering work, but can be leveraged in other domains to non-disruptively measure when people experience focus. Future research can build upon this work to identify signals associated with other facets of flow.


翻译:除了自我报告数据外,我们缺乏可靠且不会干扰的方法来识别流动。然而,退一步并认识到流动发生在专注期间,让我们有机会通过分离专注工作来取得测量流动的进展。在这里,我们采用混合研究方法,设计一种基于日志的度量,在综合收集的日志数据中利用机器学习,识别相关行动期间(表示专注),并利用日记数据和季度调查数据验证此度量标准与自我报告专注或流动的时间的一致性。我们的结果表明,我们可以确定大型技术公司的软件工程师何时经历专注工作,其中包括流动的情况。这个标准指的是工程工作,但可以在其他领域利用它来测量人们体验焦点的时间。未来的研究可以在这项工作基础上,识别与流动其他方面相关的信号。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月23日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员