We propose a method of data quantization of finite discrete-time signals which optimizes the error estimate of low frequency Haar coefficients. We also discuss the error/noise bounds of this quantization in the Fourier space. Our result shows one can quantize any discrete-time analog signal with high precision at low frequencies. Our method is deterministic, and it employs no statistical arguments, nor any probabilistic assumptions.
翻译:我们建议对有限离散时间信号进行数据量化的方法,以优化低频率海尔系数的误差估计。 我们还讨论了Fourier空间这种量化的错误/噪声界限。 我们的结果表明,在低频率上可以对任何离散时间模拟信号进行高精度的量化。 我们的方法是确定性,不使用统计论,也不使用任何概率假设。