This work considers the problem of computing the CANDECOMP/PARAFAC (CP) decomposition of large tensors. One popular way is to translate the problem into a sequence of overdetermined least squares subproblems with Khatri-Rao product (KRP) structure. In this work, for tensor with different levels of importance in each fiber, combining stochastic optimization with randomized sampling, we present a mini-batch stochastic gradient descent algorithm with importance sampling for those special least squares subproblems. Four different sampling strategies are provided. They can avoid forming the full KRP or corresponding probabilities and sample the desired fibers from the original tensor directly. Moreover, a more practical algorithm with adaptive step size is also given. For the proposed algorithms, we present their convergence properties and numerical performance. The results on synthetic data show that our algorithms outperform the existing algorithms in terms of accuracy or the number of iterations.


翻译:这项工作考虑了计算大型电压分解的问题。 一种流行的方法是将问题转化成一个由Khatri- Rao产品结构构成的、 定型最小平方子问题序列。 在这项工作中, 对于每根纤维具有不同重要性、 将随机优化与随机抽样相结合的数组, 我们提出了一个小型的随机梯度梯度下行算法, 对这些特殊最小方次问题进行重要取样。 提供了四种不同的取样策略。 它们可以避免形成完整的 KRP 或相应的概率, 直接从原始的电压中抽取所需的纤维。 此外, 还给出了一个更实用的、 适应性步骤大小的算法。 对于提议的算法, 我们展示了它们的趋同性与数字性能。 合成数据的结果显示, 我们的算法在准确性或迭代数方面超过了现有的算法。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【TAMU】最新《时间序列分析》课程笔记,527页pdf
专知会员服务
180+阅读 · 2020年9月12日
【新书】Java企业微服务,Enterprise Java Microservices,272页pdf
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月30日
Learning to Importance Sample in Primary Sample Space
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员