The Jaccard index is an important similarity measure for item sets and Boolean data. On large datasets, an exact similarity computation is often infeasible for all item pairs both due to time and space constraints, giving rise to faster approximate methods. The algorithm of choice used to quickly compute the Jaccard index $\frac{\vert A \cap B \vert}{\vert A\cup B\vert}$ of two item sets $A$ and $B$ is usually a form of min-hashing. Most min-hashing schemes are maintainable in data streams processing only additions, but none are known to work when facing item-wise deletions. In this paper, we investigate scalable approximation algorithms for rational set similarities, a broad class of similarity measures including Jaccard. Motivated by a result of Chierichetti and Kumar [J. ACM 2015] who showed any rational set similarity $S$ admits a locality sensitive hashing (LSH) scheme if and only if the corresponding distance $1-S$ is a metric, we can show that there exists a space efficient summary maintaining a $(1\pm \varepsilon)$ multiplicative approximation to $1-S$ in dynamic data streams. This in turn also yields a $\varepsilon$ additive approximation of the similarity. The existence of these approximations hints at, but does not directly imply a LSH scheme in dynamic data streams. Our second and main contribution now lies in the design of such a LSH scheme maintainable in dynamic data streams. The scheme is space efficient, easy to implement and to the best of our knowledge the first of its kind able to process deletions.


翻译:Jaccar 索引是项目集和 Boolean 数据的一个重要相似度度量。 在大型数据集中, 精确相似度计算往往无法对所有项目配对都适用, 因为时间和空间的限制, 从而产生更快捷的近似方法 。 用于快速计算 Jaccar 指数$\ frac\ vert A\ chap B\ a\ a\ cap\ a\ cvert B\vert A\ cup\ vvert A\ cup B\ vert} $ 2 和 $B$, 通常是一种微量显示的形式。 在数据流处理中, 大多数微量显示系统只能维持数据流处理中的数据流中, 但当数据流中对应的距离为1- S美元, 但当面临项目删除时, 却并没有发现任何可操作的工作。 在本文件中, 我们的动态Slightal1 中, 将一个高效的近似近似近似近似近似近似近似的近似近似近似算法 。

0
下载
关闭预览

相关内容

局部敏感哈希算法
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员