In many applications, we collect independent samples from interconnected populations. These population distributions share some latent structure, so it is advantageous to jointly analyze the samples. One effective way to connect the distributions is the semiparametric density ratio model (DRM). A key ingredient in the DRM is that the log density ratios are linear combinations of prespecified functions; the vector formed by these functions is called the basis function. A sensible basis function can often be chosen based on knowledge of the context, and DRM-based inference is effective even if the basis function is imperfect. However, a data-adaptive approach to the choice of basis function remains an interesting and important research problem. We propose an approach based on the classical functional principal component analysis (FPCA). Under some conditions, we show that this approach leads to consistent basis function estimation. Our simulation results show that the proposed adaptive choice leads to an efficiency gain. We use a real-data example to demonstrate the efficiency gain and the ease of our approach.


翻译:在许多应用中,我们从相互关联的人群中收集独立样本。这些人口分布法具有一些潜在的结构,因此有利于共同分析样本。将分布率模型(DRM)连接起来的一个有效途径是半参数密度比率模型(DRM)。DRM中的一个关键要素是,日志密度比率是预先指定函数的线性组合;这些函数形成的矢量称为基函数。根据对上下文的了解,往往可以选择明智的基础功能,即使基础功能不完善,基于DRM的推论也是有效的。然而,数据适应性基函数选择方法仍是一个有趣和重要的研究问题。我们根据经典功能主元件分析(FCCA)提出了一种方法。在某些条件下,我们表明这一方法可以导致一致的功能估计。我们的模拟结果表明,拟议的适应性选择可以带来效率收益。我们用一个真实的数据示例来证明我们方法的效益和容易度。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员