We develop and compare e-variables for testing whether $k$ samples of data are drawn from the same distribution, the alternative being that they come from different elements of an exponential family. We consider the GRO (growth-rate optimal) e-variables for (1) a 'small' null inside the same exponential family, and (2) a 'large' nonparametric null, as well as (3) an e-variable arrived at by conditioning on the sum of the sufficient statistics. (2) and (3) are efficiently computable, and extend ideas from Turner et al. [2021] and Wald [1947] respectively from Bernoulli to general exponential families. We provide theoretical and simulation-based comparisons of these e-variables in terms of their logarithmic growth rate, and find that for small effects all four e-variables behave surprisingly similarly; for the Gaussian location and Poisson families, e-variables (1) and (3) coincide; for Bernoulli, (1) and (2) coincide; but in general, whether (2) or (3) grows faster against the small null is family-dependent. We furthermore discuss algorithms for numerically approximating (1).


翻译:我们开发并比较电子变量,以测试是否从同一分布中提取了K美元的数据样本,替代办法是它们来自指数式家庭的不同元素。我们认为,对于(1) 同一指数式家庭内的“小”无效和(2) “大”非参数无效,以及(3) 通过以充足统计数据的总和为条件实现的电子变量。(2)和(3) 高效地进行了计算,并将Turner等人[2021年]和Wald[1947年]的想法分别从伯努利(Bernoulli)和[1947年]扩大到一般指数式家庭。我们对这些电子变量的对数值增长率进行理论和模拟比较,发现对于小效果而言,所有四种电子变量都表现得惊人地相似;对于Gaussian和Poisson家庭,电子变量(1)和(3)相同;对于Bernoulli,(1)和(2)相同;但一般而言,是(2)或(3)相对于小变量增长较快于家庭。我们进一步讨论数字匹配(1)的算法。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2021年2月17日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员