Piano fingering -- knowing which finger to use to play each note in a musical piece, is a hard and important skill to master when learning to play the piano. While some sheet music is available with expert-annotated fingering information, most pieces lack this information, and people often resort to learning the fingering from demonstrations in online videos. We consider the AI task of automating the extraction of fingering information from videos. This is a non-trivial task as fingers are often occluded by other fingers, and it is often not clear from the video which of the keys were pressed, requiring the synchronization of hand position information and knowledge about the notes that were played. We show how to perform this task with high-accuracy using a combination of deep-learning modules, including a GAN-based approach for fine-tuning on out-of-domain data. We extract the fingering information with an f1 score of 97\%. We run the resulting system on 90 videos, resulting in high-quality piano fingering information of 150K notes, the largest available dataset of piano-fingering to date.


翻译:钢琴指法 -- -- 知道用哪根手指来弹奏音乐片中的每个音符,是学习弹钢琴时掌握的艰难而重要的技能。虽然有些乐谱有专家附加的指法信息,但大多数乐谱缺乏这种信息,而且人们经常在在线视频中从演示中学习指法。我们认为AI的任务是将从视频中提取的指法信息自动化。这是一个非三角任务,因为手指往往被其他手指所遮住,而且从视频中往往不清楚按键的哪个键,这需要手持位置信息的同步和对所播放的笔记的了解。我们展示了如何使用深层学习模块(包括基于GAN的对外部数据进行微调的GAN方法)来以高精度执行这项任务。我们用97<unk> 的F1分提取指法信息。我们在90个视频上运行由此产生的系统,导致150K音调高品质的钢琴指针信息,这是迄今为止最大的钢琴挥动数据集。</s>

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员