In the context of the high-dimensional Gaussian linear regression for ordered variables, we study the variable selection procedure via the minimization of the penalized least-squares criterion. We focus on model selection where we propose to control predictive risk and False Discovery Rate simultaneously. For this purpose, we obtain a convenient trade-off thanks to a proper calibration of the hyperparameter K appearing in the penalty function. We obtain non-asymptotic theoretical bounds on the False Discovery Rate with respect to K. We then provide an algorithm for the calibration of K. It is based on completely observable quantities in view of applications. Our algorithm is validated by an extensive simulation study.
翻译:在高斯高斯高斯高地定点变量的高度线性回归背景下,我们通过尽量减少受处罚的最低平方标准来研究变量选择程序。我们侧重于我们同时提议控制预测风险和假发现率的模型选择。为此,我们通过在罚款功能中出现的对超光谱K进行适当校准而获得方便的权衡。我们获得了关于K.的假发现率的非被动理论界限。我们随后为校准K提供了一种算法。它基于应用方面完全可观测的数量。我们的算法通过广泛的模拟研究得到验证。