Various methods have been developed to combine inference across multiple sets of results for unsupervised clustering, within the ensemble clustering literature. The approach of reporting results from one `best' model out of several candidate clustering models generally ignores the uncertainty that arises from model selection, and results in inferences that are sensitive to the particular model and parameters chosen. Bayesian model averaging (BMA) is a popular approach for combining results across multiple models that offers some attractive benefits in this setting, including probabilistic interpretation of the combined cluster structure and quantification of model-based uncertainty. In this work we introduce clusterBMA, a method that enables weighted model averaging across results from multiple unsupervised clustering algorithms. We use clustering internal validation criteria to develop an approximation of the posterior model probability, used for weighting the results from each model. From a consensus matrix representing a weighted average of the clustering solutions across models, we apply symmetric simplex matrix factorisation to calculate final probabilistic cluster allocations. In addition to outperforming other ensemble clustering methods on simulated data, clusterBMA offers unique features including probabilistic allocation to averaged clusters, combining allocation probabilities from 'hard' and 'soft' clustering algorithms, and measuring model-based uncertainty in averaged cluster allocation. This method is implemented in an accompanying R package of the same name.


翻译:众多方法已经被开发用于无监督聚类的多组结果的融合,属于集合聚类研究的范畴。报告多个候选的聚类模型中的一个“最佳”模型的方法通常忽略了模型选择所产生的不确定性,导致的推论对特定的模型和参数选择非常敏感。贝叶斯模型平均(BMA)是一种流行的方法,可以在多个模型之间组合结果,这种方法在这种情况下具有一些吸引人的优点,包括对组合聚类结构的概率解释以及模型基础不确定性的量化。在这项工作中,我们介绍了clusterBMA,一种能够使多个无监督聚类算法的结果进行加权模型平均的方法。我们使用聚类内部验证标准开发了一个近似的后验模型概率,用于加权每个模型的结果。从表示跨模型聚类解的加权平均值的共识矩阵开始,我们应用对称的单纯形矩阵分解来计算最终的概率聚类分配。除了在模拟数据上优于其他集合聚类方法之外,clusterBMA还提供了唯一的功能,包括对平均聚类的概率分配、对“硬”和“软”聚类算法的分配概率进行组合以及测量平均聚类分配中的基于模型的不确定性。这种方法在同名的R包中实现。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员