Multi-source domain adaptation (MDA) aims to transfer knowledge from multiple source domains to an unlabeled target domain. MDA is a challenging task due to the severe domain shift, which not only exists between target and source but also exists among diverse sources. Prior studies on MDA either estimate a mixed distribution of source domains or combine multiple single-source models, but few of them delve into the relevant information among diverse source domains. For this reason, we propose a novel MDA approach, termed Pseudo Target for MDA (PTMDA). Specifically, PTMDA maps each group of source and target domains into a group-specific subspace using adversarial learning with a metric constraint, and constructs a series of pseudo target domains correspondingly. Then we align the remainder source domains with the pseudo target domain in the subspace efficiently, which allows to exploit additional structured source information through the training on pseudo target domain and improves the performance on the real target domain. Besides, to improve the transferability of deep neural networks (DNNs), we replace the traditional batch normalization layer with an effective matching normalization layer, which enforces alignments in latent layers of DNNs and thus gains further promotion. We give theoretical analysis showing that PTMDA as a whole can reduce the target error bound and leads to a better approximation of the target risk in MDA settings. Extensive experiments demonstrate PTMDA's effectiveness on MDA tasks, as it outperforms state-of-the-art methods in most experimental settings.


翻译:多源域适应(MDA)的目的是将知识从多个源域域传到一个没有标签的目标域域。MDA是一项艰巨的任务,因为严格的域转换不仅在目标和源之间存在,而且在不同来源之间也存在。关于MDA的先前研究或者估计源域分布的混合分布,或者将多个单一源模型结合起来,但其中很少有人可以深入到不同源域的相关信息中。为此原因,我们提出一个新的MDA 方法,称为MDA Pseudo目标目标(PTMDA) 。具体地说,PTMDA 将每个源和目标域的每个组都映射到一个特定集团的子空间,利用带有约束性限制的对抗性学习,将每个源和目标域的每个组都映射到一个特定集团的子空间,这是一个具有挑战性的任务。 之后,我们将剩余源源域与子域的假目标域与子域域域域的假目标域进行混合分布分布,从而通过假目标域域域域域的培训,利用额外的源源信息信息,提高深神经网络的可转让性,我们用一个有效的合成正常化正常化结构,在DNDNFA 将MDA 目标值的值上进行更好的调整,进一步提升DA 。我们通过在DA 将MDA 将MDA 将DA 做一个更更更更更 的实验室级分析,在DA,在DA,进一步进行更更更,在DA 上,在DA 做一个更,进一步提升 做一个更,在DA 做一个更 做一个更,在DA 上,在DA 的 的 的 做一个更 做一个更 的 的,进一步,进一步 的,在DA 做 做 做 做 做 做 做 的 的 的 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做 做

3
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
浅谈NLP中的领域自适应(Domain Adaptation) 技术
PaperWeekly
3+阅读 · 2021年10月27日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2021年7月18日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员