An important issue during an engineering design process is to develop an understanding which design parameters have the most influence on the performance. Especially in the context of optimization approaches this knowledge is crucial in order to realize an efficient design process and achieve high-performing results. Information theory provides powerful tools to investigate these relationships because measures are model-free and thus also capture non-linear relationships, while requiring only minimal assumptions on the input data. We therefore propose to use recently introduced information-theoretic methods and estimation algorithms to find the most influential input parameters in optimization results. The proposed methods are in particular able to account for interactions between parameters, which are often neglected but may lead to redundant or synergistic contributions of multiple parameters. We demonstrate the application of these methods on optimization data from aerospace engineering, where we first identify the most relevant optimization parameters using a recently introduced information-theoretic feature-selection algorithm that accounts for interactions between parameters. Second, we use the novel partial information decomposition (PID) framework that allows to quantify redundant and synergistic contributions between selected parameters with respect to the optimization outcome to identify parameter interactions. We thus demonstrate the power of novel information-theoretic approaches in identifying relevant parameters in optimization runs and highlight how these methods avoid the selection of redundant parameters, while detecting interactions that result in synergistic contributions of multiple parameters.
翻译:在工程设计过程中,一个重要问题是了解哪些设计参数对性能影响最大,特别是在优化方法方面,这一知识对于实现高效设计过程和实现高绩效成果至关重要。信息理论为调查这些关系提供了强有力的工具,因为措施是无模型的,因此也捕捉了非线性关系,同时只需要对输入数据作最低限度的假设。因此,我们提议使用最近采用的信息理论方法和估算算法来寻找优化结果中最有影响力的投入参数。提议的方法特别能够说明各种参数之间的相互作用,这些参数往往被忽视,但可能导致多个参数的冗余或协同贡献。我们展示了这些关于优化航空工程数据的方法的应用,我们首先利用最近采用的信息理论特征选择算法确定了最相关的优化参数,用于计算各种参数之间的相互作用。第二,我们使用新的部分信息解析(PID)框架来量化与优化结果有关的选定参数之间的冗余和协同贡献,以确定参数的相互作用。我们因此展示了新信息动力,在确定相关优化参数的选择参数时,在检测相关结果时可以避免使用这些方法。