Gaussian mixture models (GMM) are fundamental tools in statistical and data sciences. We study the moments of multivariate Gaussians and GMMs. The $d$-th moment of an $n$-dimensional random variable is a symmetric $d$-way tensor of size $n^d$, so working with moments naively is assumed to be prohibitively expensive for $d>2$ and larger values of $n$. In this work, we develop theory and numerical methods for implicit computations with moment tensors of GMMs, reducing the computational and storage costs to $\mathcal{O}(n^2)$ and $\mathcal{O}(n^3)$, respectively, for general covariance matrices, and to $\mathcal{O}(n)$ and $\mathcal{O}(n)$, respectively, for diagonal ones. We derive concise analytic expressions for the moments in terms of symmetrized tensor products, relying on the correspondence between symmetric tensors and homogeneous polynomials, and combinatorial identities involving Bell polynomials. The primary application of this theory is to estimating GMM parameters from a set of observations, when formulated as a moment-matching optimization problem. If there is a known and common covariance matrix, we also show it is possible to debias the data observations, in which case the problem of estimating the unknown means reduces to symmetric CP tensor decomposition. Numerical results validate and illustrate the numerical efficiency of our approaches. This work potentially opens the door to the competitiveness of the method of moments as compared to expectation maximization methods for parameter estimation of GMMs.
翻译:高尔斯混合模型( GMM ) 是统计和数据科学的基本工具。 我们研究多变量高尔斯和 GMM 的瞬间。 美元维度随机变量的美元时点是美元, 美元维度的时点是一个对称值, 美元维度的时点是美元, 所以天真地工作对于美元> 2美元和更大的美元值来说代价惊人。 在这项工作中, 我们开发了隐含计算时点的理论和数字方法, 用于计算时点的 ROM 数据, 将计算和存储成本降低到$\ mathcal{ O} (n2) 美元和 $\ mathcal{O} 。 美元维度随机值的美元时点点点点点点点点点点点点点点点点点点点点点是, 普通的焦点的时点的时点的时点计算法是, 运行点的时点的时点的时点计算法是 。 运行的时点的时点的计算法是, 的时点的时点的时点的计算法是,, 的时点的时点的时点的时点的时点的时点的时序的计算法是,, 的时序的时序的时序的变法是,, 的演法是,, 的时序的时序的计算法是,, 的时序的时序的时序的变法是, 的计算法是, 。