Many statistical estimators for high-dimensional linear regression are M-estimators, formed through minimizing a data-dependent square loss function plus a regularizer. This work considers a new class of estimators implicitly defined through a discretized gradient dynamic system under overparameterization. We show that under suitable restricted isometry conditions, overparameterization leads to implicit regularization: if we directly apply gradient descent to the residual sum of squares with sufficiently small initial values, then under some proper early stopping rule, the iterates converge to a nearly sparse rate-optimal solution that improves over explicitly regularized approaches. In particular, the resulting estimator does not suffer from extra bias due to explicit penalties, and can achieve the parametric root-n rate when the signal-to-noise ratio is sufficiently high. We also perform simulations to compare our methods with high dimensional linear regression with explicit regularization. Our results illustrate the advantages of using implicit regularization via gradient descent after overparameterization in sparse vector estimation.


翻译:高维线性回归的许多统计估计值是M- 估计值,通过最大限度地减少数据依赖的平方损失函数和常规化来形成。 这项工作考虑了在超分分度下通过离散梯度动态系统隐含定义的一种新的估计值。 我们显示,在适当的限制的偏差条件下,超分度导致隐含的正规化:如果我们直接将梯度下移到具有足够小的初始值的方块的剩余数中,然后在某种适当的早期停止规则下,它会汇集到一种几乎稀少的速率最佳解决办法,在明确规范化的方法下,这种解决办法会改善。 特别是, 由此产生的估计值不会因明确的处罚而产生额外的偏差, 并且当信号到噪声比率足够高时, 能够达到参数根率。 我们还进行模拟, 将我们的方法与高维线回归法与明确的正规化进行比较。 我们的结果说明了在稀少病媒估计的偏差度后通过梯度梯度下降而使用隐性正规化法的优点。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
kubernetes pv-controller 解析
阿里技术
0+阅读 · 2021年12月24日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关资讯
kubernetes pv-controller 解析
阿里技术
0+阅读 · 2021年12月24日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员