Since proposed in the 70s, the Non-Equilibrium Green Function (NEGF) method has been recognized as a standard approach to quantum transport simulations. Although it achieves superiority in simulation accuracy, the tremendous computational cost makes it unbearable for high-throughput simulation tasks such as sensitivity analysis, inverse design, etc. In this work, we propose AD-NEGF, to our best knowledge the first end-to-end differentiable NEGF model for quantum transport simulations. We implement the entire numerical process in PyTorch, and design customized backward pass with implicit layer techniques, which provides gradient information at an affordable cost while guaranteeing the correctness of the forward simulation. The proposed model is validated with applications in calculating differential physical quantities, empirical parameter fitting, and doping optimization, which demonstrates its capacity to accelerate the material design process by conducting gradient-based parameter optimization.
翻译:自70年代提出以来,非平衡绿色函数(NEGF)法被公认为量子运输模拟的标准方法。虽然它取得了模拟精度方面的优势,但巨大的计算成本使得高通量模拟任务无法承受,如敏感度分析、逆向设计等。在这项工作中,我们建议AD-NEGF在我们最了解的情况下,为量子运输模拟提出第一个端到端可差异的NEGF模型。我们在PyTorch中实施整个数字过程,并设计带有隐含层技术的定制后方传球,以可承受的成本提供梯度信息,同时保证远方模拟的正确性。拟议的模型经过验证,在计算差异物理数量、经验参数和优化时应用了应用,这显示了它通过基于梯度的参数优化加速材料设计过程的能力。