The motivation for this paper comes from the ongoing SARS-CoV-2 Pandemic. Its goal is to present a previously neglected approach to non-adaptive group testing and describes it in terms of residuated pairs on partially ordered sets. Our investigation has the advantage, as it naturally yields an efficient decision scheme (decoder) for any given testing scheme. This decoder allows to detect a large amount of infection patterns. Apart from this, we devise a construction of good group testing schemes that are based on incidence matrices of finite partial linear spaces. The key idea is to exploit the structure of these matrices and make them available as test matrices for group testing. These matrices may generally be tailored for different estimated disease prevalence levels. As an example, we discuss the group testing schemes based on generalized quadrangles. In the context at hand, we state our results only for the error-free case so far. An extension to a noisy scenario is desirable and will be treated in a subsequent account on the topic.
翻译:本文的动机来自正在进行的SARS-CoV-2大流行性肺炎。 其宗旨是展示一种先前忽视的非适应性群体测试方法, 并以部分定购组别中的重新配对来描述它。 我们的调查具有优势, 因为它自然为任何特定测试方案产生一个有效的决定方案( 解码器) 。 这个解码器可以探测大量感染模式。 除此之外, 我们设计了一个基于有限部分线性空间的发生率矩阵的良好的群件测试方案。 关键的想法是利用这些矩阵的结构, 并把它们作为集体测试的矩阵。 这些矩阵一般可以针对不同的估计疾病流行程度。 我们讨论基于通用四重体的群组试验方案。 我们手边的描述我们的结果仅针对迄今为止的无错误案例。 扩展一个噪音情景是可取的, 并将在随后的一个账户中对此进行处理 。