Adaptive optimization methods have become the default solvers for many machine learning tasks. Unfortunately, the benefits of adaptivity may degrade when training with differential privacy, as the noise added to ensure privacy reduces the effectiveness of the adaptive preconditioner. To this end, we propose AdaDPS, a general framework that uses non-sensitive side information to precondition the gradients, allowing the effective use of adaptive methods in private settings. We formally show AdaDPS reduces the amount of noise needed to achieve similar privacy guarantees, thereby improving optimization performance. Empirically, we leverage simple and readily available side information to explore the performance of AdaDPS in practice, comparing to strong baselines in both centralized and federated settings. Our results show that AdaDPS improves accuracy by 7.7% (absolute) on average -- yielding state-of-the-art privacy-utility trade-offs on large-scale text and image benchmarks.
翻译:适应性优化方法已成为许多机器学习任务的默认解决方案。 不幸的是,适应性的好处可能会随着使用不同隐私的培训而降低,因为增加噪音以确保隐私降低适应性先决条件的有效性。 为此,我们提议AdaDPS,这是一个使用非敏感侧信息作为梯度先决条件的一般框架,允许在私人环境中有效使用适应性方法。我们正式展示AdaDPS减少了实现类似隐私保障所需的噪音数量,从而改进优化性能。我们利用简单和现成的侧信息探索AdaDPS在实践中的绩效,与中央和联邦环境中的强大基线进行比较。我们的结果显示,AdaDPS提高了平均7.7%(绝对)的准确性,在大规模文本和图像基准上产生最新版的隐私使用性交易。