This paper proposes a two-dimensional (2D) bidirectional long short-term memory generative adversarial network (GAN) to produce synthetic standard 12-lead ECGs corresponding to four types of signals: left ventricular hypertrophy (LVH), left branch bundle block (LBBB), acute myocardial infarction (ACUTMI), and Normal. It uses a fully automatic end-to-end process to generate and verify the synthetic ECGs that does not require any visual inspection. The proposed model is able to produce synthetic standard 12-lead ECG signals with success rates of 98% for LVH, 93% for LBBB, 79% for ACUTMI, and 59% for Normal. Statistical evaluation of the data confirms that the synthetic ECGs are not biased towards or overfitted to the training ECGs, and span a wide range of morphological features. This study demonstrates that it is feasible to use a 2D GAN to produce standard 12-lead ECGs suitable to augment artificially a diverse database of real ECGs, thus providing a possible solution to the demand for extensive ECG datasets.
翻译:本文提出一个双维(2D)双向短期内存双向双向短期对抗网络(GAN),以产生符合四类信号的合成标准12级领先ECG信号:左心肺过大(LVH)、左分支捆绑块(LBB)、急性心肌梗死(ACUTMI)和正常。它使用完全自动的端对端过程来产生和核查不需要任何视觉检查的合成ECG。拟议的模型能够产生合成标准12级领先ECG信号,LVH成功率为98%,LBB成功率为93%,ACUTMI成功率为79%,正常为59%。对数据的统计评估证实,合成ECG没有偏向或过于适合培训ECG,而且分布着广泛的形态特征。这项研究表明,使用2DGAN来产生标准12级的ECG是可行的,适合以人工方式扩大真正的ECG数据库,从而为广泛的ECG数据集的需求提供可能的解决方案。