Planar functions, introduced by Dembowski and Ostrom, are functions from a finite field to itself that give rise to finite projective planes. They exist, however, only for finite fields of odd characteristic. They have attracted much attention in the last decade thanks to their interest in theory and those deep and various applications in many fields. This paper focuses on planar functions on a cubic extension $\mathbb F_{q^3}/\mathbb F_q$. Specifically, we investigate planar binomials and trinomials polynomials of the form $\sum_{0\le i\le j<3}a_{ij}x^{q^i+q^j}$ on $\mathbb F_{q^3}$, completely characterizing them and determine the equivalence class of those planar polynomials toward their classification. Our achievements are obtained using connections with algebraic projective curves and classical algebraic tools over finite fields.
翻译:Dembowski 和 Ostrom 引入的Planar 函数是自一个有限字段的函数,产生有限的投影平面。 但是,它们只存在于一些奇特的有限字段中。 由于它们对理论和许多领域的深度和各种应用的兴趣,它们在过去10年中引起了很大的注意。 本文侧重于在立方扩展 $\mathbb F<unk> q<unk> 3} /\mathbf F_q$ 的平面函数。 具体地说, 我们调查了以 $\sum0\le i\le j < 3}a}xqq<unk> i+qj} 以$\mathbf F<unk> q<unk> 3} 为单位的平面功能, 并确定了这些平面多面图多面体的等值类别 。 我们的成就是通过与等值投影曲线和经典代数工具在限定字段上的连接而取得的。</s>