项目名称: 广义对称,分数阶可积系统和不等式的研究

项目编号: No.11371323

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 沈守枫

作者单位: 浙江工业大学

项目金额: 62万元

中文摘要: 本项目主要研究:(1) 首先阐明分数阶切对称、Lie-Backlund对称和非局部对称的定义、性质和计算方法并给出不变子空间的最大维数估计,进而系统地建立分数阶微分方程的广义对称理论。(2) 结合抽象Lie代数的结构理论,对一般形式的分数阶微分方程进行广义对称群分类,进而构造分数阶可积系统并研究容许的分数阶Lax对、分数阶Backlund变换等。(3) 建立分数阶微分方程初值问题的Craddock方法,给出基本解和Hardy型不等式的广义对称解释。 本项目研究的问题具有丰富的理论内涵和深刻的物理背景。成果将充实微分方程的对称群理论和可积性理论,为今后相关领域的研究奠定基础。

中文关键词: 广义对称;分数阶;可积系统;短脉冲方程;

英文摘要: This projiect mainly studies the following contents. (1) The definitions, properties and computation methods for the fractional contact symmetry, Lie-Backlund symmetry and nonlocal symmetry are presented and the estimates of the maximum dimension of the i

英文关键词: generalized symmetry;fractional order;integrable system;short pulse equation;

成为VIP会员查看完整内容
0

相关内容

【经典书】线性代数与应用,698页pdf
专知会员服务
88+阅读 · 2021年9月27日
专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
76+阅读 · 2021年7月23日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【经典书】线性代数,352页pdf教你应该这样学
专知会员服务
105+阅读 · 2020年12月20日
专知会员服务
138+阅读 · 2020年12月3日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
86+阅读 · 2020年8月2日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
论文 | YOLO(You Only Look Once)目标检测
七月在线实验室
14+阅读 · 2017年12月12日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
小贴士
相关主题
相关VIP内容
【经典书】线性代数与应用,698页pdf
专知会员服务
88+阅读 · 2021年9月27日
专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
76+阅读 · 2021年7月23日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【经典书】线性代数,352页pdf教你应该这样学
专知会员服务
105+阅读 · 2020年12月20日
专知会员服务
138+阅读 · 2020年12月3日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
86+阅读 · 2020年8月2日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员