The training of deep learning models poses vast challenges of including parameter tuning and ordering of training data. Significant research has been done in Curriculum learning for optimizing the sequence of training data. Recent works have focused on using complex reinforcement learning techniques to find the optimal data ordering strategy to maximize learning for a given network. In this paper, we present a simple and efficient technique based on continuous optimization. We call this new approach Training Sequence Optimization (TSO). There are three critical components in our proposed approach: (a) An encoder network maps/embeds training sequence into continuous space. (b) A predictor network uses the continuous representation of a strategy as input and predicts the accuracy for fixed network architecture. (c) A decoder further maps a continuous representation of a strategy to the ordered training dataset. The performance predictor and encoder enable us to perform gradient-based optimization in the continuous space to find the embedding of optimal training data ordering with potentially better accuracy. Experiments show that we can gain 2AP with our generated optimal curriculum strategy over the random strategy using the CIFAR-100 dataset and have better boosts than the state of the art CL algorithms. We do an ablation study varying the architecture, dataset and sample sizes showcasing our approach's robustness.
翻译:深层次学习模式的培训提出了包括参数调整和培训数据排序在内的巨大挑战。在课程学习方面进行了重大研究,以优化培训数据序列的顺序。最近的工作重点是使用复杂的强化学习技术,以寻找最佳数据排序战略,使特定网络的学习最大化。在本文中,我们展示了一种基于连续优化的简单而有效的技术。我们称之为培训序列优化(TSO)的新方法。我们拟议方法中有三个关键组成部分:(a)一个编码器网络地图/编组培训序列进入连续空间。 (b)一个预测器网络使用战略的持续表述作为输入,并预测固定网络结构的准确性。 (c)一个解码器进一步绘制了订购培训数据集的战略的持续表述。性能预测器和编码器使我们能够在连续空间进行基于梯度的优化,以可能更准确的方式将最佳培训数据排序纳入。实验显示,我们可以利用CFAR-100数据集生成的最佳课程战略在随机战略上获得2AP,并比建筑模型的精确度更好的推进力。我们做了一个“CL”模型和“CL”模型的状态。