We study distributed multiagent optimization over (directed, time-varying) graphs. We consider the minimization of $F+G$ subject to convex constraints, where $F$ is the smooth strongly convex sum of the agent's losses and $G$ is a nonsmooth convex function. We build on the SONATA algorithm: the algorithm employs the use of surrogate objective functions in the agents' subproblems (going thus beyond linearization, such as proximal-gradient) coupled with a perturbed (push-sum) consensus mechanism that aims to track locally the gradient of $F$. SONATA achieves precision $\epsilon>0$ on the objective value in $\mathcal{O}(\kappa_g \log(1/\epsilon))$ gradient computations at each node and $\tilde{\mathcal{O}}\big(\kappa_g (1-\rho)^{-1/2} \log(1/\epsilon)\big)$ communication steps, where $\kappa_g$ is the condition number of $F$ and $\rho$ characterizes the connectivity of the network. This is the first linear rate result for distributed composite optimization; it also improves on existing (non-accelerated) schemes just minimizing $F$, whose rate depends on much larger quantities than $\kappa_g$ (e.g., the worst-case condition number among the agents). When considering in particular empirical risk minimization problems with statistically similar data across the agents, SONATA employing high-order surrogates achieves precision $\epsilon>0$ in $\mathcal{O}\big((\beta/\mu) \log(1/\epsilon)\big)$ iterations and $\tilde{\mathcal{O}}\big((\beta/\mu) (1-\rho)^{-1/2} \log(1/\epsilon)\big)$ communication steps, where $\beta$ measures the degree of similarity of the agents' losses and $\mu$ is the strong convexity constant of $F$. Therefore, when $\beta/\mu < \kappa_g$, the use of high-order surrogates yields provably faster rates than what achievable by first-order models; this is without exchanging any Hessian matrix over the network.


翻译:我们研究的是( 方向的、 时间变化的) 图形上的多试剂优化 。 我们考虑将 $F+G$ 最小化, 但须受 comex 限制, $F$是代理人损失的平滑总和, $G$是非moth convex 函数。 我们以 SONATA 算法为基础: 算法在代理人的子问题中使用 surgate 目标函数 (因此超越线性化, 如准度/ 渐变), 加上一个( push- sum) 的共识机制, 以本地跟踪 $F$ 的梯度。 SONATA 以 $\ epslon 和 $美元目标值的准确性 。 (\ kaptappa_ g) 梯度计算每节点和 $treadal developal a mostal) igh( kppia_ gentremotional lex) 和 美元 美元 的通信步骤中, 美元 ialmodemodeal demodeal demodeal demodeal a mess a mess a mess a mess a mess motions)。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
119+阅读 · 2020年3月30日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年12月3日
Arxiv
0+阅读 · 2020年11月28日
Arxiv
0+阅读 · 2020年11月25日
VIP会员
相关资讯
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员