Constrained submodular set function maximization problems often appear in multi-agent decision-making problems with a discrete feasible set. A prominent example is the problem of multi-agent mobile sensor placement over a discrete domain. However, submodular set function optimization problems are known to be NP-hard. In this paper, we consider a class of submodular optimization problems that consists of maximization of a monotone and submodular set function subject to a uniform matroid constraint over a group of networked agents that communicate over a connected undirected graph. Our objective is to obtain a distributed suboptimal polynomial-time algorithm that enables each agent to obtain its respective policy via local interactions with its neighboring agents. Our solution is a fully distributed gradient-based algorithm using the multilinear extension of the submodular set functions and exploiting a maximum consensus scheme. This algorithm results in a policy set that when the team objective function is evaluated at worst case the objective function value is in $1-1/e-O(1/T)$ of the optimal solution. An example demonstrates our results.
翻译:组合式子模块集函数最大化问题经常出现在多试剂决策问题中,有一套离散可行的套件。一个突出的例子就是多试剂移动传感器在离散域的定位问题。然而,已知的子模块集函数优化问题是硬性NP。在本文中,我们考虑了一组子模块优化问题,其中包括将单质和子模块集函数最大化,但需服从于对一组通过连接的无方向图进行通信的网络化代理器的统一约束。我们的目标是获得一个分布的亚优化多元时算法,使每个代理器能够通过与周边代理器的本地互动获得各自的政策。我们的解决办法是利用子模块集函数的多线性扩展并利用一个最大共识计划,完全分布基于梯度的算法。这种算法的结果是在最坏的情况下评价小组目标函数时,最佳解决办法的客观函数值为1-1/e-O1/T美元。一个实例说明我们的结果。