We study "active" decision making over sensor networks where the sensors' sequential probing actions are actively chosen by continuously learning from past observations. We consider two network settings: with and without central coordination. In the first case, the network nodes interact with each other through a central entity, which plays the role of a fusion center. In the second case, the network nodes interact in a fully distributed fashion. In both of these scenarios, we propose sequential and adaptive hypothesis tests extending the classic Chernoff test. We compare the performance of the proposed tests to the optimal sequential test. In the presence of a fusion center, our test achieves the same asymptotic optimality of the Chernoff test, minimizing the risk, expressed by the expected cost required to reach a decision plus the expected cost of making a wrong decision, when the observation cost per unit time tends to zero. The test is also asymptotically optimal in the higher moments of the time required to reach a decision. Additionally, the test is parsimonious in terms of communications, and the expected number of channel uses per network node tends to a small constant. In the distributed setup, our test achieves the same asymptotic optimality of Chernoff's test, up to a multiplicative constant in terms of both risk and the higher moments of the decision time. Additionally, the test is parsimonious in terms of communications in comparison to state-of-the-art schemes proposed in the literature. The analysis of these tests is also extended to account for message quantization and communication over channels with random erasures.


翻译:我们从过去观测中不断学习来积极选择传感器连续测序行动的传感器网络“积极”决策。 我们考虑两个网络设置: 有中央协调和没有中央协调。 在第一种情况下, 网络节点通过一个中央实体相互作用, 发挥聚合中心的作用。 在第二种情况下, 网络节点以完全分布的方式相互作用。 在这两种假设中, 我们提议按顺序和适应性假设进行测试, 扩展经典的 Chernoff 测试。 我们比较了拟议测试的性能和最佳测序测试。 在存在一个聚变中心时, 我们的测试实现了同样无症状的最佳优化: 切诺夫测试, 以达成决定所需的预期成本和作出错误决定的预期成本来表示, 网络节点相互互动。 当每单位时间的观测成本趋向为零时, 测试也是无症状的最佳。 测试在通信和最佳测序中, 将频道使用的预期数量与网络的文献的数值进行比较, 以最低的频率比较方式进行。 在最高级的测试中, 测试的测试条件为相同, 在最高级的测试中, 在最高级的测试中, 的测试中, 的测试条件是相同的时间里调测试, 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Deciding What to Learn: A Rate-Distortion Approach
Arxiv
0+阅读 · 2021年1月15日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员