The performance of existing single-view 3D reconstruction methods heavily relies on large-scale 3D annotations. However, such annotations are tedious and expensive to collect. Semi-supervised learning serves as an alternative way to mitigate the need for manual labels, but remains unexplored in 3D reconstruction. Inspired by the recent success of semi-supervised image classification tasks, we propose SSP3D, a semi-supervised framework for 3D reconstruction. In particular, we introduce an attention-guided prototype shape prior module for guiding realistic object reconstruction. We further introduce a discriminator-guided module to incentivize better shape generation, as well as a regularizer to tolerate noisy training samples. On the ShapeNet benchmark, the proposed approach outperforms previous supervised methods by clear margins under various labeling ratios, (i.e., 1%, 5% , 10% and 20%). Moreover, our approach also performs well when transferring to real-world Pix3D datasets under labeling ratios of 10%. We also demonstrate our method could transfer to novel categories with few novel supervised data. Experiments on the popular ShapeNet dataset show that our method outperforms the zero-shot baseline by over 12% and we also perform rigorous ablations and analysis to validate our approach.
翻译:现有单一视图 3D 重建方法的绩效在很大程度上依赖于大型 3D 说明。 但是, 这样的说明是乏味和昂贵的, 要收集的。 半监督学习是减轻人工标签需要的替代方法, 但仍然未在 3D 重建中探索。 由于最近半监督图像分类任务的成功, 我们提议 SSP3D, 一个半监督的3D 重建框架。 特别是, 我们引入一个关注引导原型, 以指导现实的天体重建前模块为形状。 我们进一步引入一个导导导模块, 以激励更好的形状生成, 以及一个常规化的模块, 以容忍噪音训练样本。 在 ShapeNet 基准上, 拟议的方法在各种标签比率下, 清晰的利润率( 即1%、 5%、 10% 和 20% ) 优于先前的监督方法。 此外, 我们的方法在向真实世界 Pix3D数据集转换时, 也表现得很好。 我们还展示我们的方法可以转换到新颖的类别, 有少数新的受监督的数据, 以及定期化的训练器 。 在精确的模型分析中, 12 实验中, 也展示了我们的精确的模型分析方法。