We study the concept of the continuous mean distance of a weighted graph. For connected unweighted graphs, the mean distance can be defined as the arithmetic mean of the distances between all pairs of vertices. This parameter provides a natural measure of the compactness of the graph, and has been intensively studied, together with several variants, including its version for weighted graphs. The continuous analog of the (discrete) mean distance is the mean of the distances between all pairs of points on the edges of the graph. Despite being a very natural generalization, to the best of our knowledge this concept has been barely studied, since the jump from discrete to continuous implies having to deal with an infinite number of distances, something that increases the difficulty of the parameter. In this paper we show that the continuous mean distance of a weighted graph can be computed in time quadratic in the number of edges, by two different methods that apply fundamental concepts in discrete algorithms and computational geometry. We also present structural results that allow a faster computation of this continuous parameter for several classes of weighted graphs. Finally, we study the relation between the (discrete) mean distance and its continuous counterpart, mainly focusing on the relevant question of the convergence when iteratively subdividing the edges of the weighted graph.


翻译:我们研究加权图的连续平均距离概念。 对于连接的未加权图表, 平均距离可以被定义为所有脊椎之间距离的算术平均值。 这个参数提供了图表压缩的自然量度, 并且已经与数种变量一起进行了密集研究, 包括加权图的版本。 (分异) 平均距离的连续比喻是图形边缘所有点对等点之间的距离平均值。 尽管这是一个非常自然的概括化, 但就我们所知, 这个概念很少被研究过, 因为从离散到连续, 意味着要处理无限的距离, 这会增加参数的难度。 在本文中, 我们表明, 加权图的连续平均距离可以用时间四边数来计算。 在离散算算法和计算几类加权图中, 我们用两种不同的方法来显示结构结果, 能够更快地计算出这个连续参数。 最后, 我们研究( 偏偏偏偏偏偏偏偏的) 等值的相位点之间的关系, 是在连续的平面上, 。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
8+阅读 · 2020年5月2日
已删除
Arxiv
32+阅读 · 2020年3月23日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员