Click-through rate (CTR) prediction is crucial for personalized online services. Sample-level retrieval-based models, such as RIM, have demonstrated remarkable performance. However, they face challenges including inference inefficiency and high resource consumption due to the retrieval process, which hinder their practical application in industrial settings. To address this, we propose a universal plug-and-play \underline{r}etrieval-\underline{o}riented \underline{k}nowledge (\textbf{\name}) framework that bypasses the real retrieval process. The framework features a knowledge base that preserves and imitates the retrieved \& aggregated representations using a decomposition-reconstruction paradigm. Knowledge distillation and contrastive learning optimize the knowledge base, enabling the integration of retrieval-enhanced representations with various CTR models. Experiments on three large-scale datasets demonstrate \name's exceptional compatibility and performance, with the neural knowledge base serving as an effective surrogate for the retrieval pool. \name surpasses the teacher model while maintaining superior inference efficiency and demonstrates the feasibility of distilling knowledge from non-parametric methods using a parametric approach. These results highlight \name's strong potential for real-world applications and its ability to transform retrieval-based methods into practical solutions. Our implementation code is available to support reproducibility in \url{https://github.com/HSLiu-Initial/ROK.git}.
翻译:暂无翻译