Extreme value analysis (EVA) uses data to estimate long-term extreme environmental conditions for variables such as significant wave height and period, for the design of marine structures. Together with models for the short-term evolution of the ocean environment and for wave-structure interaction, EVA provides a basis for full probabilistic design analysis. Environmental contours provide an alternate approach to estimating structural integrity, without requiring structural knowledge. These contour methods also exploit statistical models, including EVA, but avoid the need for structural modelling by making what are believed to be conservative assumptions about the shape of the structural failure boundary in the environment space. These assumptions, however, may not always be appropriate, or may lead to unnecessary wasted resources from over design. We introduce a methodology for full probabilistic analysis to estimate the joint probability density of the environment, conditional on the occurrence of an extreme structural response, for simple structures. We use this conditional density of the environment as a basis to assess the performance of different environmental contour methods. We demonstrate the difficulty of estimating the contour boundary in the environment space for typical data samples, as well as the dependence of the performance of the environmental contour on the structure being considered.
翻译:暂无翻译