To execute collaborative tasks in unknown environments, a robotic swarm needs to establish a global reference frame and locate itself in a shared understanding of the environment. However, it faces many challenges in real-world scenarios, such as the prior information about the environment being absent and poor communication among the team members. This work presents DCL-SLAM, a fully distributed collaborative LiDAR SLAM framework intended for the robotic swarm to simultaneously co-localize in an unknown environment with minimal information exchange. Based on ad-hoc wireless peer-to-peer communication (limited bandwidth and communication range), DCL-SLAM adopts the lightweight LiDAR-Iris descriptor for place recognition and does not require full connectivity among teams. DCL-SLAM includes three main parts: a replaceable single-robot front-end that produces LiDAR odometry results; a distributed loop closure module that detects inter-robot loop closures with keyframes; and a distributed back-end module that adapts distributed pose graph optimizer combined with a pairwise consistent measurement set maximization algorithm to reject spurious inter-robot loop closures. We integrate our proposed framework with diverse open-source LiDAR odometry methods to show its versatility. The proposed system is extensively evaluated on benchmarking datasets and field experiments over various scales and environments. Experimental result shows that DCL-SLAM achieves higher accuracy and lower communication bandwidth than other state-of-art multi-robot SLAM systems. The full source code is available at https://github.com/zhongshp/DCL-SLAM.git.
翻译:为在未知环境中执行协作任务,机器人群体需要建立全局参考框架,并在共同理解的环境中进行定位。然而,在现实场景中,它面临着许多挑战,如缺乏环境的先验信息和团队成员间的通信状况不佳等。本研究提出了一种完全分布式的协作激光雷达SLAM框架DCL-SLAM,旨在使机器人群体在没有或最小化信息交流的情况下同时完成未知环境中的共定位任务。基于点对点的无线自组织通信(带宽和通信范围受限),DCL-SLAM采用轻量级的激光雷达-Iris描述符进行地标识别,无需在团队之间建立全连通。该框架包括三个主要部分:可替换的单机器人前端,用于生成激光雷达里程计结果;分布式环路闭合模块,用于检测关键帧之间的机器人间的环路闭合;分布式后端模块,采用分布式位姿图优化器结合在线拒绝虚假环路闭合的技术,以适应各个环境中的通信能力差异。我们将这个框架与多种开源的激光雷达里程计方法相结合来展示其通用性。该框架在不同大小和环境下的评估数据集和场地实验中得到广泛评估。实验结果表明,DCL-SLAM所实现的精度更高,而通信带宽却比其它最先进的多机器人SLAM系统要低。完整源代码可在https://github.com/zhongshp/DCL-SLAM.git上获得。