Accurate and robust state estimation is critical for autonomous navigation of robot teams. This task is especially challenging for large groups of size, weight, and power (SWAP) constrained aerial robots operating in perceptually-degraded GPS-denied environments. We can, however, actively increase the amount of perceptual information available to such robots by augmenting them with a small number of more expensive, but less resource-constrained, agents. Specifically, the latter can serve as sources of perceptual information themselves. In this paper, we study the problem of optimally positioning (and potentially navigating) a small number of more capable agents to enhance the perceptual environment for their lightweight,inexpensive, teammates that only need to rely on cameras and IMUs. We propose a numerically robust, computationally efficient approach to solve this problem via nonlinear optimization. Our method outperforms the standard approach based on the greedy algorithm, while matching the accuracy of a heuristic evolutionary scheme for global optimization at a fraction of its running time. Ultimately, we validate our solution in both photorealistic simulations and real-world experiments. In these experiments, we use lidar-based autonomous ground vehicles as the more capable agents, and vision-based aerial robots as their SWAP-constrained teammates. Our method is able to reduce drift in visual-inertial odometry by as much as 90%, and it outperforms random positioning of lidar-equipped agents by a significant margin. Furthermore, our method can be generalized to different types of robot teams with heterogeneous perception capabilities. It has a wide range of applications, such as surveying and mapping challenging dynamic environments, and enabling resilience to large-scale perturbations that can be caused by earthquakes or storms.
翻译:暂无翻译